
www.manaraa.com

COMPARISON OF DIFFERENT FFT IMPLEMENTATIONS IN THE ENCRYPTED

DOMAIN

Tiziano Bianchi1, Alessandro Piva1, and Mauro Barni2

Dipartimento di Elettronica e Telecomunicazioni (1)
Università di Firenze

Via S. Marta 3, 50139, Firenze, Italy
e-mail: {bianchi, piva}@lci.det.unifi.it

Dipartimento di Ingegneria dell’Informazione (2)
Università di Siena

Via Roma 56, 53100, Siena, Italy
e-mail: barni@dii.unisi.it

ABSTRACT

Signal processing modules working directly on the encrypted
data could provide an elegant solution to application scenar-
ios where valuable signals should be protected from a mali-
cious processing device. In this paper, we compare different
implementations of the discrete Fourier transform (DFT) in
the encrypted domain. Both radix-2 and radix-4 fast Fourier
transforms (FFTs) will be defined using the homomorphic
properties of the underlying cryptosystem. We derive the
maximum size of the sequence that can be transformed by
using the different implementations and we provide compu-
tational complexity analyses and comparisons. The results
show that the radix-4 FFT is best suited for an encrypted
domain implementation.

1. INTRODUCTION

A large variety of new applications, ranging from multime-
dia content distribution to advanced healthcare systems for
continuous health monitoring, have been made possible by
recent advances in signal processing. These developments
raise several important issues concerning the security of the
digital contents to be processed, including intellectual prop-
erty rights management, authenticity, privacy, and condi-
tional access. Currently available solutions for secure manip-
ulation of signals simply build a secure cryptographic layer
on top of the signal processing modules, by assuming that the
involved parties or devices trust each other: the cryptography
layer is used only to protect the data against third parties or
to provide authenticity. Unfortunately, this may not be suf-
ficient for the envisaged applications, since the owner of the
data may not trust the processing devices.

The availability of signal processing modules that work
directly on the encrypted data would be a powerful tool in
application scenarios where “valuable” signals must be pro-
duced, processed or exchanged in digital format. Some re-
cent examples regards zero-knowlegde watermark detection
[1, 2], where a watermark detector reveals the presence of
a watermark without learning anything about the detection
process or the watermark itself, or buyer-seller protocols
[3, 4], where a watermark is embedded in such a way that
the seller does not have access to the watermarked copy of a
content sold to a buyer.

The work described in this paper has been supported in part by the Eu-
ropean Commission through the IST Programme under Contract no 034238
- SPEED. The information in this document reflects only the author’s views,
is provided as is and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

Surely, if a signal processing in the encrypted domain
(s.p.e.d.) framework has to be defined, one of the fundamen-
tal modules should be the discrete Fourier transform (DFT),
defined as

X(k) =
M−1

∑
n=0

x(n)W nk, k = 0,1, . . . ,M−1 (1)

where W = e− j2π/M and x(n) is a finite duration sequence
with length M. Among the appealing properties of the above
transform one is that it can be implemented via fast algo-
rithms, noted as fast Fourier transforms (FFTs).

The aim of our work is to provide and compare differ-
ent s.p.e.d. implementations of the above expression. We
will consider a scenario in which the transform processor is
fed with a sample-wise encrypted version of the input vector.
In order to make possible linear computations on encrypted
values, we assume that the chosen cryptosystem is homomor-
phic with respect to the addition, i.e., there exists an operator
φ(·, ·) such that

D[φ(E[a],E[b])] = a + b (2)

where E[·] and D[·] denote the encryption and decryption op-
erators. With such a cryptosystem it is indeed possible to add
two encrypted values without first decrypting them. More-
over, it is possible to multiply an encrypted value by a public
integer value by repeatedly applying the operator φ(·, ·).

Another property of the above cryptosystem we assume
is that it is probabilistic, that is, given two encrypted val-
ues it should not be possible to decide if they conceal the
same value. This is fundamental, since the alphabeth to
which the input samples belong is usually limited, and a non-
probabilistic cryptosystem would disclose a great amount of
information about the statistical distribution of the input sig-
nal. A widely known example of a cryptosystem fulfilling
both requirements is the Paillier cryptosystem [5], for which
the operator φ(·, ·) is a modular multiplication.

Since the DFT transform coefficients are public, the ex-
pression in (1) can be computed with an encrypted input vec-
tor by relying on the homomorphic property. However, some
issues need to be addressed.

First of all, both the input samples and the DFT coeffi-
cients need to be represented as integer values. Secondly,
the homomorphic property permits only a very limited set
of operations to be performed on encrypted values. If we
consider a fixed point representation, the result of each mul-
tiplication should be either rounded or truncated. In the en-
crypted domain, such operations are not possible relying only

www.manaraa.com

on homomorphic computations, but require the use of inter-
active and computationally expensive protocols [6]. Since
the s.p.e.d. DFT is a basic building block, it would be prefer-
able to devise solutions that avoid interaction, so as to keep
the s.p.e.d. DFT as simple as possible. Finally, FFT like al-
gorithms should be applicable also in the encrypted domain,
in order to achieve similar computational savings. As to the
security of the s.p.e.d. DFT, this follows immediately from
the security of the underlying cryptosystem: the proposed
approach does not modify the underlying cryptosystem, but
merely exploits some of its properties.

In this paper, a convenient signal model for s.p.e.d. will
be proposed, allowing us to define both a radix-2 and a radix-
4 s.p.e.d. FFT that require no interation between the involved
parties. We will analyze the maximum size of the sequence
that can be transformed by using the proposed s.p.e.d. im-
plementations and we will provide a computational complex-
ity analysis, taking into account the requirements of different
possible s.p.e.d. scenarios.

2. SIGNAL MODEL FOR THE ENCRYPTED

DOMAIN

Let us consider a signal x(n) ∈ C, n = 0, . . . ,M − 1, with
x(n) = xR(n)+ jxI(n), xR,I ∈ R. In the following, we will
assume |x(n)| ≤ 1, from which |xR,I(n)| ≤ 1.

In order to process x(n) in the encrypted domain, the sig-
nal values must be approximated by suitable integers. This is
accomplished by the following quantization process

s(n) = ⌈Q1xR(n)⌋+ j⌈Q1xI(n)⌋ = sR(n)+ jsI(n) (3)

where ⌈·⌋ is the rounding function and Q1 is a suitable scaling
factor. In the following, we will assume that the quantization
scaling factor is an integer. In the following, we will con-
sider the encryption of s(n) as the separate encryption of both
sR(n) and sI(n), i.e., E[s(n)] = {E[sR(n)],E[sI(n)]}. Hence,
if the cryptosystem encrypts integers modulo N we need
a one-to-one mapping between sR,I(n) and sR,I(n) mod N.
This can be achieved by imposing N ≥ 2Q1 + 1.

The coefficients W nk can be quantized using the same
strategy as above. In particular, we define

C(r) =

⌈

Q2 cos

(

2πr

M

)⌋

− j

⌈

Q2 sin

(

2πr

M

)⌋

=CR(r)+ jCI(r)

(4)

where Q2 is the DFT coefficient scaling factor. Thanks to the
properties of W , we have −Q2 ≤CR,I(r) ≤ Q2.

3. DECIMATION IN TIME RADIX-2 FFT

This algorithm is applied when M = 2ν and allows the DFT
to be computed in ν stages each requiring M/2 complex mul-
tiplications. At each stage, a new pair of coefficients is ob-
tained as a linear combination of the corresponding old pair
of coefficients, using the well-known butterfly structure [7].
A s.p.e.d. butterfly can be obtained by applying the proposed
model and the homomorphic property. First, an integer val-
ued butterfly is obtained as

S(m+1)(p) = Q2S(m)(p)+C(r)S(m)(q) (5)

S(m+1)(q) = Q2S(m)(p)−C(r)S(m)(q). (6)

Note that in the proposed model a unit coefficient is quan-
tized as Q2. Hence, the integer implementation of the FFT
algorithm requires M/2 additional integer multiplications at
each stage.

The computation of the radix-2 FFT using (5)-(6) re-
quires two problems to be tackled with. The first one is that

there will be a scaling factor between S(ν)(k) = S(k) and the
desired value X(k). The second one is that, if a cryptosystem
which encrypts integers modulo N is used, one must ensure
that there is a one-to-one mapping between S(k) mod N and
S(k). Hence, according to the proposed model, one has to
find an upper bound on S(k) such that |SR,I(k)| ≤ QS, and
verify that N ≥ 2QS + 1.

Let us express s(n) = Q1x(n)+εs(n) and C(r) = Q2W r +
εW (r), where εs(n) and εW (r) denote the quantization er-
rors on the input signal and the transform coefficients. We
will show that the integer FFT output S(k) can be always ex-
pressed as

S(k) = KX(k)+ εS(k) (7)

where K is an overall scale factor and εS(k) models the prop-
agation of the quantization errors. Based on the above equa-
tion, the desired DFT output can be estimated as X̃(k) =
S(k)/K, and the upper bound is

QS = MK + εS,max. (8)

Since the two branches of the butterfly are equivalent, we
can consider without loss of generality the first branch. If we

express S(m)(p) = K(m)X (m)(p)+ ε(m)
S (p), then we have

S(m+1)(p) =Q2K(m)
(

X (m)(p)+W rX (m)(q)
)

+ Q2

(

ε(m)
S (p)+W rε(m)

S (q)
)

+ K(m)X (m)(q)εW (r)+ ε(m)
S (q)εW (r)

(9)

from which we derive the following recursive relations

K(m+1) =Q2K(m) (10)

ε(m+1)
S (p) =Q2

(

ε(m)
S (p)+W rε(m)

S (q)
)

+ K(m)X (m)(q)εW (r)+ ε(m)
S (q)εW (r).

(11)

At the first stage S(0)(n) = s(ñ) = Q1x(ñ)+ εs(ñ), where ñ
indicates n in bit reverse order, so that the recursion starts

with K(0) = Q1 and ε(0)
S (p) = εs(p̃). Since at the first two

stages W r ∈ {1, j}, no integer multiplication is required, and
the butterflies can be modified so that no scaling factor is

introduced. Therefore, K(2) = Q1 and by using (10), it is

easy to derive the scale factor as K = K(ν) = Q1Qν−2
2 .

As to the upper bound, we consider an equivalent recur-
sive relation on an upper bound of the quantization error,
given as

|ε(m+1)
S | ≤

(

2Q2 +
1√
2

)

|ε(m)
S |+ 2m

√
2

K(m). (12)

In the case of the first two stages the above expression sim-

plifies as |ε(m+1)
S | ≤ 2|ε(m)

S |, since εW = 0. Hence, by using as

www.manaraa.com

initial condition |ε(2)
S | ≤ 4/

√
2 in (12) (since |ε(0)

S | ≤ 1/
√

2),
the final upper bound can be expressed as

|ε(ν)
S | ≤ 4√

2

(

2Q2 +
1√
2

)ν−2

+
ν−3

∑
k=0

2ν−1−k

√
2

Q1Qν−3−k
2

(

2Q2 +
1√
2

)k

= εS,R2,max

(13)

from which we derive the upper bound on S(k) as QS =

MQ1Qν−2
2 + εS,R2,max.

4. DECIMATION IN TIME RADIX-4 FFT

This algorithm can be employed when M = 4µ and allows
the DFT to be computed in µ stages each requiring 3M/4
complex multiplications. At each stage, four new coefficients
are obtained as a linear combination of four old coefficients
using the following radix-4 butterfly [7]

X (m+1)(pk) =
3

∑
i=0

X (m)(pi)W
ri(− j)ik, k = 0, . . . ,3. (14)

Without loss of generality, the upper bound can be eval-
uated considering the integer version of the first branch:

S(m+1)(p0) =Q2S(m)(p0)+C(r)S(m)(p1)

+C(2r)S(m)(p2)+C(3r)S(m)(p3).
(15)

By using the same model as with the radix-2 case, the fol-
lowing recursive relations can be derived

K(m+1) =Q2K(m) (16)

|ε(m+1)
S | ≤

(

4Q2 +
3√
2

)

|ε(m)
S |+ 3

4m

√
2

K(m). (17)

Moreover, at the first stage of the radix-4 FFT algorithm

W r = 1, so that the recursion begins with K(1) = Q1 and

|ε(1)
S | ≤ 4/

√
2. The error upper bound for radix-4 FFT is

|ε(µ)
S | ≤ 4√

2

(

4Q2 +
3√
2

)µ−1

+
µ−2

∑
k=0

4µ−1−k

√
2

Q1Q
µ−2−k
2

(

4Q2 +
3√
2

)k

= εS,R4,max

(18)

from which we derive the upper bound on S(k) as QS =

MQ1Q
µ−1
2 + εS,R4,max.

5. DIRECT IMPLEMENTATION

To make comparisons, we can also consider a direct com-
putation according to the DFT definition. By applying the
proposed model, it is easy to obtain

S(k) =Q1Q2X(k)+
M−1

∑
n=0

Q1x(n)εW (nk)

+
M−1

∑
n=0

Q2εs(n)W nk +
M−1

∑
n=0

εs(n)εW (nk).

(19)

The scaling factor is K = Q1Q2. As to the upper bound, after
simple manupulations we have

|εS| ≤ M
Q1√

2
+ M

Q2√
2

+
M

2
= εS,DFT,max (20)

from which we derive QS = MQ1Q2 + εS,DFT,max.

6. COMPLEXITY ANALYSIS

The complexity of the proposed FFT implementation in the
encrypted domain depends on several parameters, including
the used cryptosystem, its homomorphic properties, and the
scaling factor Q2. In this paper we assume that a Paillier
cryptosystem or one of its extensions are used. Hence, each
addition between plaintexts will be translated into a modular
multiplication between cyphertexts, and each multiplication
between plaintexts will be translated into a modular expo-
nentiation of a cyphertexts to a plaintext. Moreover, an en-
crypted subtraction requires a modular division, usually im-
plemented as ab−1 mod n. The same holds for exponentia-
tions to negative exponents, usually implemented as (a−e)−1

mod n. As a result, the complexity will be evaluated as the
number of modular exponentiations (ME), modular multipli-
cations (MM), and modular inversions (MI) which are re-
quired by a s.p.e.d. algorithm.

The s.p.e.d. implementation of both complex additions
and complex multiplications should be considered. The im-
plementation of a complex addition is trivial. As to a com-
plex multiplication, we consider an implementation requir-
ing four real multiplications and two real additions, i.e.,
sC = {sRCR − sICI ,sRCI + sICR}.

The complexity of a complex addition, a complex sub-
traction and a complex multiplication have to be translated
into ME, MM, and MI. As to a s.p.e.d. complex addition, it
always requires two MMs, while the complexity of a com-
plex subtraction is two MMs and two MIs. As to a complex
multiplication, we have four MEs, two MMs and one MI.
Moreover, if we assume that the sign of the multipliers is
uniformly distributed, two additional MIs should be consid-
ered on the average. Finally, if a complex value is multiplied
by a real value (rescaled) the complexity is always two MEs
and one MI on the average.

The complexity of radix-2 can be derived as follows.
Each stage of the radix-2 FFT, except the first two stages, re-
quires M/2 complex multiplications plus M/2 rescalings of
complex values when implemented in the encrypted domain.
Moreover, each stage requires also M/2 complex additions
and M/2 complex subtractions.

A similar procedure can be used to derive the complexity
of the encrypted radix-4 FFT. In this case each stage, except
the first stage, requires 3M/4 complex multiplications plus
M/4 rescalings of complex values. Moreover, each radix-4
stage requires also M complex additions and M complex sub-
tractions. The complexity results are summarized in Table 1.

7. COMPARISON OF DIFFERENT

IMPLEMENTATIONS

Let us consider a scenario in which a set of encrypted data
must undergo different processing tasks. In such a scenario,
it is reasonable to assume that the data are encrypted once,
and that each processing task employs the same set of en-
crypted data. Therefore, each task must rely on an imple-
mentation satisfying the requirement on the modulus.

www.manaraa.com

Table 1: Computational complexity of s.p.e.d. FFT algo-
rithms.

radix-2 radix-4 DFT

ME 3M log2 M−6M 7
4 M log2 M− 7

2 M 4M2

MM 3M log2 M−2M 11
4 M log2 M− 3

2 M 4M2 −2M

MI 3M log2 M−4M 9
4 M log2 M− 5

2 M 2M2

In the following, we will assume that both Q1 and Q2

are powers of two, i.e., Q1 = 2n1 and Q2 = 2n2 . For security
reasons, we will assume that the minimum modulus used by
Paillier satisfies nP = ⌈log2 N⌉ = 1024.

In order to ensure that no wrap-around occurs in the in-
ternal computations the modulus of the cryptosystem must
satisfy

N ≥ 2(2νQ1Qα
2 + ξ)+ 1 (21)

where we can have α = 1 (DFT), α = ν − 2 (radix-2) or
α = ν/2−1 (radix-4), and ξ can be deduced from equation
(13), (18) or (20). Considering practical choices of Q1 and
Q2, it is safe to assume ξ < 2νQ1Qα

2 −1/2, so that the above
bound is satisfied by requiring

nP ≥ ν + n1 + αn2 + 3. (22)

As to n1, n2, different scenarios can be considered, ac-
cording to whether the inputs and the twiddle factors of the
plaintext FFT are either fixed point or floating point values:

Fixed point inputs: if the input is quantized using b1 bits,
its values can be mapped onto integer values in the interval

[−2b1−1,2b1−1 −1], so that we can assume n1 = b1 −1;
Floating point inputs: in order to preserve the whole

dynamic of the normalized floating point representation,

one should be able to represent values from ±2−2c1−1−2 to

±22c1−1
, where c1 is the number of bits of the exponent. Un-

less the properties of the input signal are known, this requires
n1 = 2c1 −2;

Fixed point coefficients: as in the case of fixed point

inputs, if the W nks are quantized using b2 bits we have
n2 = b2 −1;

Floating point coefficients: considering that the dynamic
range of DFT coefficients is [sin(2π/M),1] ≈ [π2−ν+1,1],
keeping the same precision of a floating point representation
requires n2 = f2 + ν − 2, where f2 is the number of bits of
the fractional part.

As an alternative way to choose n2, one could consider
the variance of the error introduced by coefficient scaling and
rounding. In the case of the radix-2 implementation, an er-
ror analysis has been provided in [8], showing that the ap-
proximation error introduced by a s.p.e.d. implementation is
well below that of a plaintext fixed point implementation and
comparable to that of a plaintext floating point implememen-
tation. Such analysis can be easily extended to the radix-4
case, leading to similar results.

Given the number of bits of Paillier and the number of
points of the FFT, the disequalities implied by (22) can be
compared in order to assess which implementation is feasi-
ble. An example is given in Fig. 1, where both fixed point and
floating point cases are considered. In the floating point case,
we considered IEEE 754 single precision inputs (c1 = 8) and
double precision coefficients (f2 = 52). As can be seen, the

5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

2000

ν=log
2
 M

n
P
 =

 l
o

g
2
 N

DFT
radix−2
radix−4

(a)

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

ν=log
2
 M

n
P
 =

 l
o

g
2
 N

DFT
radix−2
radix−4

(b)

Figure 1: Minimum value of nP = ⌈log2 N⌉ as a function of
ν = log2 M for three different s.p.e.d. DFT implementations.
a) n1 = 15, n2 = 63; b) n1 = 254, n2 = 50 + ν . The straight
line corresponds to nP = 1024.

radix-4 implementation can be used with nP = 1024 even if
the number of DFT points grows very large. However, in
the floating point scenario even the radix-4 may not be feasi-
ble for high DFT sizes. Hence, if some processing requires
a higher size DFT one has to resort to an alternative imple-
mentation, e.g. the direct DFT.

Also a different scenario can be taken into consideration,
in which the modulus of the cryptosystem is set to the min-
imum value required by a particular FFT implementation.
Since the cost of a modular operation depends on the mod-
ulus size [9], a natural question is whether a fast algorithm
requiring a higher modulus size (e.g., the FFT) can be less
efficient than a naı̈ve implementation requiring a lower mod-
ulus size (e.g., the direct DFT).

In order to make a complexity comparison, we made the
following assumptions: 1) the cost of the algorithm is domi-
nated by the number of exponentiations; 2) the cost of a mod-
ular exponentiation (modulo N2

min = 22nP,min, with n2 bit ex-

ponent) is modeled as CE = 1.5n2(2nP,min)
2κ , where κ can

be interpreted as the cost of a bit operation (bit op).

Given the above hypotheses, the complexity of the differ-

www.manaraa.com

5 10 15 20 25 30
10

8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

ν=log
2
 M

b
it
 o

p
s

DFT
radix−2
radix−4

(a)

5 10 15 20 25 30
10

8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

ν=log
2
 M

b
it
 o

p
s

DFT
radix−2
radix−4

(b)

Figure 2: Number of bit operations for three different s.p.e.d.
DFT implementations, according to (23)-(25). a) n1 = 15,
n2 = 63; b) n1 = 254, n2 = 50 + ν .

ent implementations can be expressed as

CDFT = 24 ·22νn2(ν + n1 + n2 + 3)2 bit ops (23)

CR2 = 18(ν−2)2νn2(ν +n1+n2(ν−2)+3)2 bit ops (24)

CR4 = 10.5(ν −2)2νn2(ν + n1 + n2(ν −2)/2 + 3)2 bit ops
(25)

The complexity of the proposed FFTs is compared in
Fig. 2. As can be seen, even if both FFTs are impaired by
a large modulus size, their complexity is always well below
that of a direct DFT. In this scenario the radix-4 algorithm is
always the best one for what concerns the complexity, irre-
spective of the other parameters.

It is also interesting to compare the complexity of the
s.p.e.d. DFT with that of encryption/decryption operations.
In the case of the Paillier cryptosystem, both operations re-
quire one exponentiation each [5]. Howewer, such exponen-
tiations are more complex than those involved in s.p.e.d. op-
erations, because the exponents usually have nP significant
bits (whereas s.p.e.d. requires n2 bits exponentiations). If
we model the cost of an encryption/decryption operation as
CE D = 6n3

Pκ , then the cost of encrypting and decrypting a

vector of M = 2ν samples will be CENC/DEC = 12 · 2ν(nP)3

bit ops. Such cost can be compared to (23)-(25). For exam-
ple, in the case of the radix-4 FFT, as long as 10.5(ν−2)n2 <
12nP the cost of the FFT will be less than the cost of en-
cryption plus decryption. One of the consequences of this
behavior is that a processing chain performing decryption,
plaintext FFT, and encryption, apart from not guaranteeing
confidentiality, can be more expensive than directly process-
ing encrypted data.

8. CONCLUDING REMARKS

We have investigated different FFT implementations on a
vector of encrypted samples, which are made possible thanks
to the homomorphic properties of the underlying cryptosys-
tem. The relations between the maximum allowable FFT size
and the modulus of the cryptosystem, the FFT implementa-
tion, and the required precision have been derived. Also the
computational complexities of the different approaches have
been derived and compared, taking into account the con-
straints of the s.p.e.d. implementation. We considered a first
scenario in which the available cryptosystem is fixed and a
second scenario in which the parameters of the cryptosystem
may be adapted to the requirements of the FFT. Our approach
demonstrates that the radix-4 FFT is best suited for both sce-
narios, giving useful design criteria for the implementation
of s.p.e.d. modules.

REFERENCES

[1] A. Adelsbach and A.-R. Sadeghi. Zero-knowledge wa-
termark detection and proof of ownership. In Proc. 4th
Int. Work. on Information Hiding, IH’01, pages 273–288,
2001.

[2] M. Malkin and T. Kalker. A cryptographic method for
secure watermark detection. In Proc. 8th Int. Work. on
Information Hiding, IH’06, Old Town Alexandria, Vir-
ginia, USA, 10-12 July 2006. Springer Verlag.

[3] N. Memon and P. Wong. A buyer-seller watermarking
protocol. IEEE Trans. on Image Proc., 10(4):643–649,
Apr. 2001.

[4] M. Kuribayashi and H. Tanaka. Fingerprinting proto-
col for images based on additive homomorphic property.
IEEE Transactions on Image Processing, 14(12):2129–
2139, Dec. 2005.

[5] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Eurocrypt ’99: Advances
in Cryptology, Lecture Notes in Computer Science 1592,
pages 223–238. Springer-Verlag, 1999.

[6] R. Cramer, I. Damgård, and J. B. Nielsen. Multi-
party computation from threshold homomorphic encryp-
tion. Lecture Notes in Computer Science, 2045:280–299,
2001.

[7] L. R. Rabiner and B. Gold. Theory and Application
of Digital Signal Processing. Prentice-Hall, Englewood
Cliffs, NJ, 1975.

[8] T. Bianchi, A. Piva, and M. Barni. Implementing the
discrete Fourier transform in the encrypted domain. In
Proc. of ICASSP 2008, 30 Mar.–4 Apr. 2008.

[9] Ç. K. Koç, T. Acar, and B. S. Kalinski. Analyzing
and comparing Montgomery multiplication algorithms.
IEEE Micro, 16(3):26–33, June 1996.

